
Efficacy and safety of SGLT2 inhibitors with and without GLP-1 receptor agonists

A SMART-C Collaborative Meta-Analysis

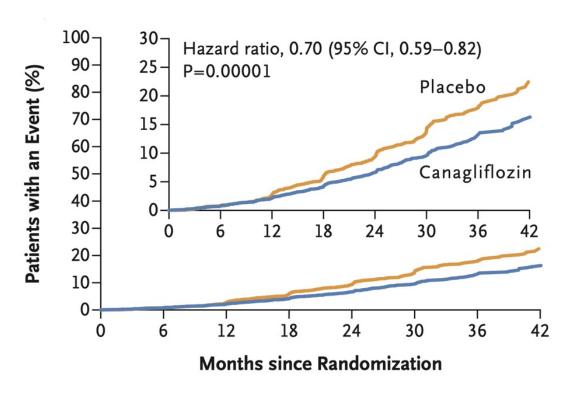
Dr Brendon Neuen MBBS(Hons) MSc(Oxon) PhD FRACP FASN

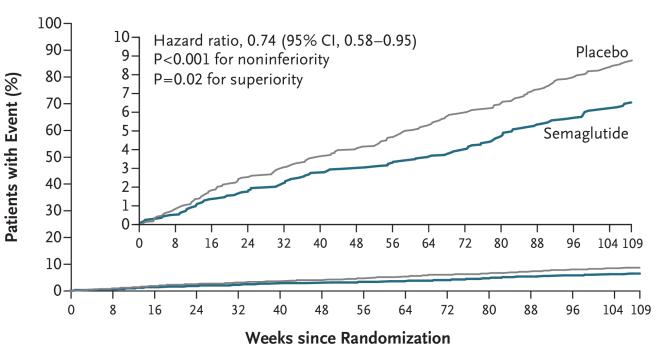
The George Institute for Global Health, Sydney, Australia

Royal North Shore Hospital, Sydney, Australia

Disclosures

- Consultancy, speaker honoraria or travel support: AstraZeneca, Alexion, Bayer, Boehringer & Ingelheim, Novo Nordisk, Travere Therapeutics, Cambridge Healthcare Research, Cornerstone Medical Education, Dedham Group, The Limbic, Medscape, American Diabetes Association, Renal Society of Australasia
- Trial/Consortium steering committees: SMART-C, AstraZeneca, Bayer, CSL Behring
- Grants: National Health and Medical Research Council, Medical Research Future Fund, Ramaciotti Foundation (Australia)


All honoraria and fees paid to The George Institute for Global Health



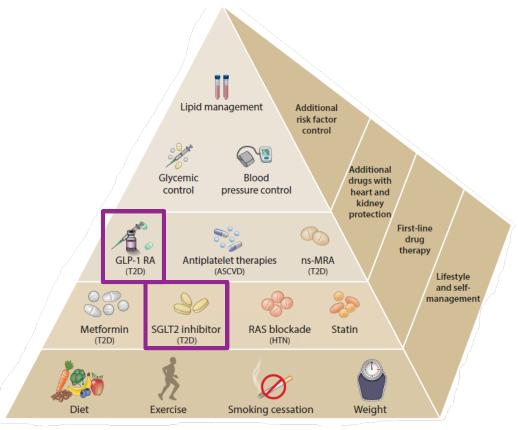
In type 2 diabetes, SGLT2i and GLP-1RA both improve kidney and cardiovascular outcomes

CREDENCE

SUSTAIN-6

Perkovic V et al. NEJM 2019

Marso S et al. NEJM 2016


Guidelines recognise the potential of combination SGLT2i and GLP-1RA

Diabetes Care

10.41c In people with type 2 diabetes and established ASCVD or multiple risk factors for ASCVD, combined therapy with an SGLT2 inhibitor with demonstrated cardiovascular benefit and a GLP-1 receptor agonist with demonstrated cardiovascular benefit may be considered for additive reduction of the risk of adverse cardiovascular and kidney events. **A**

Cardiovascular disease risk management: Standards of Care in Diabetes – 2024. American Diabetes Association. Diabetes Care 2024

KDIGO 2022 Clinical Practice Guideline on Diabetes Management in CKD. Kidney Int 2022

Rationale and aim

- Evidence for combined use of SGLT2i and GLP-1RA mainly from small trials assessing effects on cardiometabolic risk factors
- Background use of GLP-1RA too infrequent in any single outcome trial to understand the effects of SGLT2i on <u>clinical outcomes</u> with and without GLP-1RA

AIM

 Conduct a collaborative meta-analysis to evaluate the effects of SGLT2i on cardiovascular, kidney and safety outcomes in patients with diabetes by baseline GLP-1RA use

Methods

- SGLT2i Meta-Analysis Cardio-Renal Trialists Consortium (SMART-C) collaborative meta-analysis
 - Eligibility: Randomised, double-blind, placebo-controlled trial assessing effects on a primary clinical outcome
 - Led by academic steering committee with representatives from each trial
- Analysis restricted to participants with diabetes
- Outcomes: MACE, HHF or CV death, CKD progression, eGFR slope, safety outcomes

Statistical analysis

- Two-stage meta-analysis using a harmonised analytical approach and endpoint definitions
- Treatment effects by baseline GLP-1RA obtained from Cox regression models
- Two slope linear mixed effects model with unstructured covariance matrix used to calculate chronic and total eGFR slope
- Inverse variance weighted meta-analysis

Baseline characteristics: T2D at high CV risk trials

	GLP-1	RA yes	GLP-1	RA no
	SGLT2i	Placebo	SGLT2i	Placebo
Participants, n	937	693	23626	17312
Age, years (SD)	63.0 (7.1)	62.8 (6.8)	63.7 (7.8)	63.8 (7.6)
Female, n (%)	269 (28.7)	207 (29.9)	7922 (33.5)	6138 (35.5)
History of CV disease, n (%)	602 (64.3)	410 (59.2)	16784 (71.0)	11044 (63.8)
History of heart failure, n (%)	85 (9.1)	58 (8.4)	3318 (14.0)	2388 (13.8)
Systolic BP, mmHg (SD)	132.8 (15.5)	133.8 (15.2)	135.0 (15.5)	135.1 (15.6)
BMI, kg/m2 (SD)	34.9 (5.8)	35.0 (6.8)	31.5 (5.7)	31.5 (5.8)
HbA1c, % (SD)	8.2 (1.0)	8.1 (1.0)	8.2 (1.0)	8.2 (1.1)
eGFR, mL/min/1.73m ² (SD)	79.3 (20.5)	77.5 (19.8)	79.3 (19.8)	78.9 (19.4)
uACR ≥30 mg/g, n (%)	312 (33.7)	228 (33.3)	8034 (34.2)	5680 (33.1)
RAS blockade use, n (%)	807 (86.1)	583 (84.1)	19063 (80.7)	13977 (80.7)
Insulin use, n (%)	477 (50.9)	349 (50.4)	10788 (45.7)	7781 (45.0)

Baseline characteristics: CKD trials

	GLP-1I	RA yes	GLP-1RA no		
	SGLT2i	Placebo	SGLT2i	Placebo	
CKD trials					
Participants, n	635	640	9839	9817	
Age, years (SD)	66.0 (8.8)	65.5 (9.1)	66.0 (9.4)	66.3 (9.3)	
Female, n (%)	217 (34.2)	234 (36.6)	3885 (39.5)	3873 (39.5)	
History of CV disease, n (%)	296 (46.6)	273 (42.7)	4560 (46.3)	4621 (47.1)	
History of heart failure, n (%)	116 (18.3)	112 (17.5)	2248 (22.8)	2252 (22.9)	
BMI, kg/m2 (SD)	35.4 (6.8)	35.7 (7.6)	31.2 (6.4)	31.2 (6.3)	
eGFR, mL/min/1.73m² (SD)	44.4 (13.5)	43.0 (13.7)	43.8 (14.4)	43.6 (14.4)	
uACR ≥30 mg/g, n (%)	477 (75.1)	463 (72.3)	7804 (79.3)	7799 (79.4)	
RAS blockade use, n (%)	568 (89.4)	583 (91.1)	9057 (92.1)	8960 (91.3)	
Insulin use, n (%)	454 (71.5)	496 (77.5)	6024 (61.2)	5893 (60.0)	

Consistent benefit on MACE by baseline GLP-1RA use

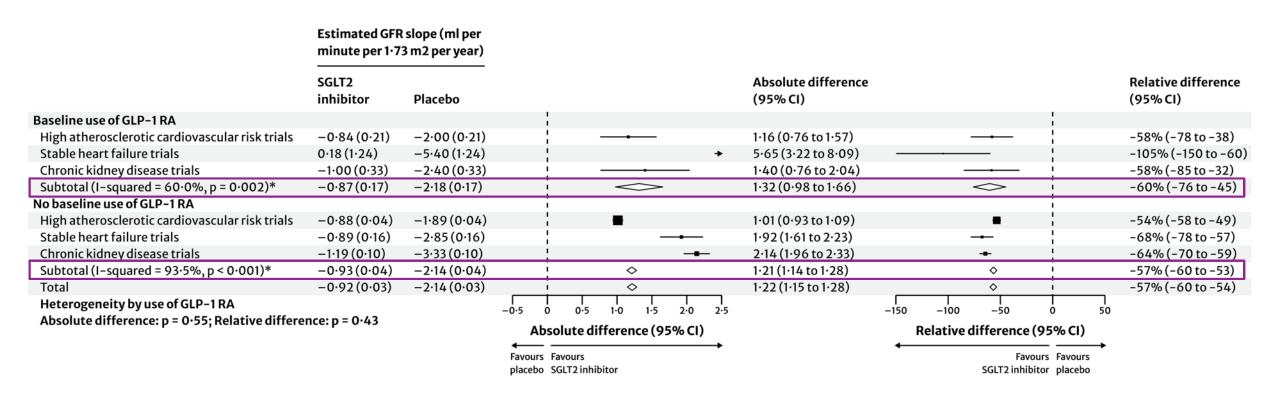
(MI, stroke, CV death)

	Events/patients (%)		Event rate per 100 patient years			
	SGLT2 inhibitor	Placebo	SGLT2 inhibitor	Placebo		HR (95% CI)
Baseline use of GLP-1 RA					1	
High atherosclerotic cardiovascular risk trials	85/937 (9·1)	66/693 (9.5)	2.7	4.3		0.83 (0.60 to 1.15)
Stable heart failure trials	12/88 (13·6)	17/72 (23·6)	7.3	19.0		0·51 (0·24 to 1·11)
Chronic kidney disease trials	42/635 (6.6)	46/640 (7.2)	3.6	4.1		0·89 (0·58 to 1·37)
Subtotal (I-squared = 0.0%, p = 0.86)	139/1660 (8·4)	129/1405 (9·2)	3⋅3	5∙0		0·81 (0·63 to 1·03)
No baseline use of GLP-1 RA						
High atherosclerotic cardiovascular risk trials	2408/23620 (10·2)	1789/17310 (10·3)	3.0	4.6		0.91 (0.85 to 0.97)
Stable heart failure trials	614/4781 (12·8)	661/4798 (13.8)	7.6	8.1	-	0.93 (0.83 to 1.04)
Chronic kidney disease trials	665/9839 (6.8)	782/9817 (8· 0)	3.8	4.6	-	0·84 (0·76 to 0·93)
Subtotal (I-squared = 0.0% , p = 0.80)	3687/38240 (9.6)	3232/31925 (10·1)	3.8	5·1	\$!	0·90 (0·86 to 0·94)
Total	3826/39900 (9·6)	3361/33330 (10·1)	3.8	5∙1	♦i	0·89 (0·85 to 0·94)
Heterogeneity by use of GLP-1 RA: p = 0.31					0.25 0.5 1.0 2.0 4.0	
					HR (95% CI)	
					Favours Favours SGLT2 inhibitor placebo	

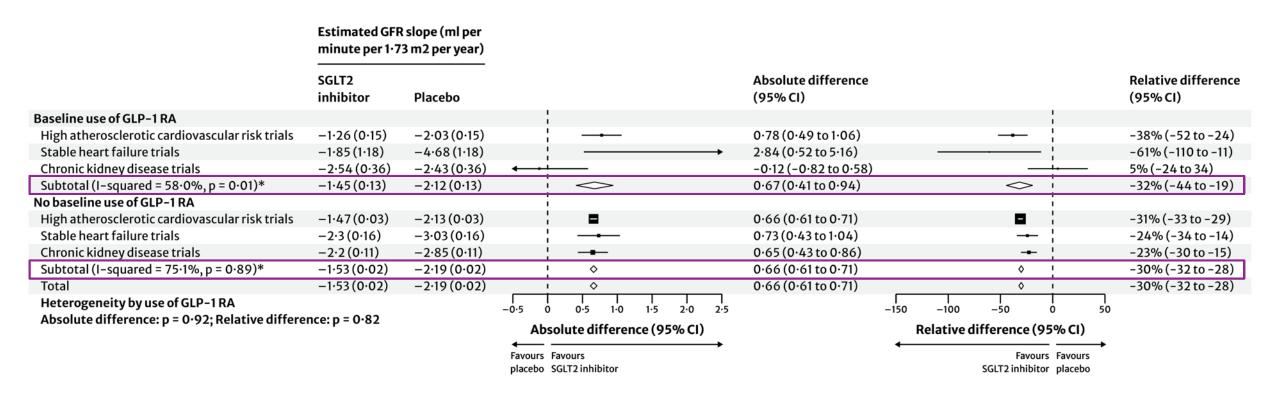
Consistent benefit on <u>heart failure hospitalisation</u> or CV death by baseline GLP-1RA use

	Events/patients (%)		Event rate per 100 patient years			
	SGLT2 inhibitor	Placebo	SGLT2 inhibitor	Placebo		HR (95% CI)
Baseline use of GLP-1 RA					;	
High atherosclerotic cardiovascular risk trials	52/937 (5·5)	42/693 (6·1)	1.7	2.5		0·80 (0·52 to 1·25)
Stable heart failure trials	23/88 (26·1)	18/72 (25.0)	17.6	20.9	<u></u>	0.84 (0.44 to 1.62)
Chronic kidney disease trials	32/635 (5.0)	44/640 (6.9)	2.7	3.9	<u>_</u>	0.68 (0.43 to 1.07)
Subtotal (I-squared = 6%, p = 0·39)	107/1660 (6·4)	104/1405 (7·4)	2.9	4·1	\sim	0·76 (0·57 to 1·01)
No baseline use of GLP-1 RA					! !	
High atherosclerotic cardiovascular risk trials	1453/23626 (6.2)	1201/17312 (6.9)	1.7	3·1		0.80 (0.74 to 0.86)
Stable heart failure trials	877/4781 (18·3)	1104/4798 (23.0)	11.4	14.9	=	0·77 (0·70 to 0·84)
Chronic kidney disease trials	611/9839 (6·2)	803/9817 (8·2)	3.6	4.7	-	0·74 (0·67 to 0·83)
Subtotal (I-squared = 4·2%, p = 0·40)	2941/38246 (7·7)	3108/31927 (9.7)	3.4	5·4	♦	0·78 (0·74 to 0·82)
Total	3048/39906 (7.6)	3212/33332 (9·6)	3.4	5·3	♦ i	0·77 (0·74 to 0·81)
Heterogeneity by use of GLP-1 RA: p = 0.90				Г 0.2	HR (95% CI)	
					Favours Favours SGLT2 inhibitor placebo	

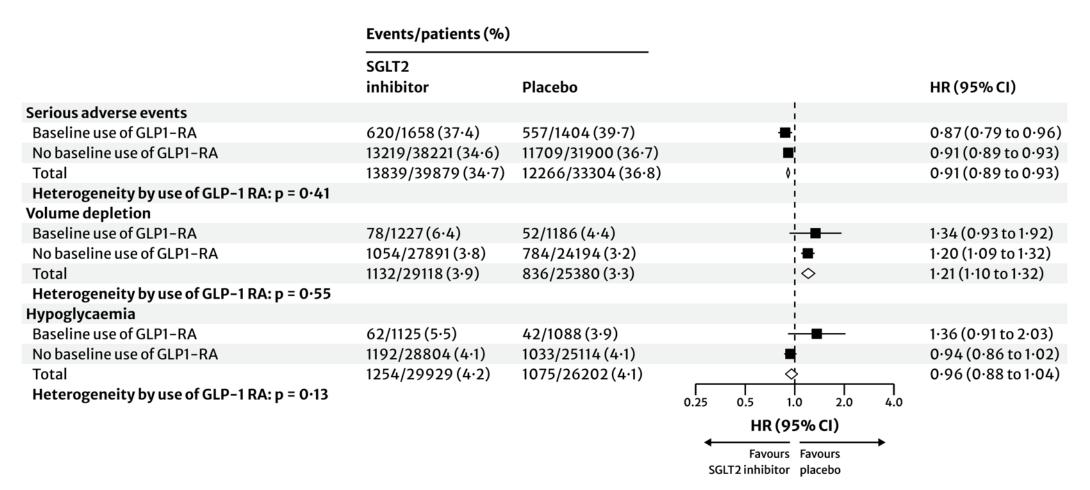
Consistent benefit on CKD progression by baseline GLP-1RA use


(40% decline in eGFR, kidney failure or death due or kidney failure)

	Events/patients (%)		Event rate per 100 patient years			
	SGLT2 inhibitor	Placebo	SGLT2 inhibitor	Placebo		HR (95% CI)
Baseline use of GLP-1 RA					<u> </u>	
High atherosclerotic cardiovascular risk trials	14/936 (1·5)	17/693 (2·5)	0.4	1.0	<u> </u>	0.60 (0.27 to 1.31)
Stable heart failure trials	3/47(6·4)	3/33 (9·1)	2.2	4.7 —		0.64 (0.13 to 3.12)
Chronic kidney disease trials	40/635 (6.3)	53/640 (8·3)	3.2	4.5	 ;	0.67 (0.44 to 1.02)
Subtotal (I-squared = 0.0%, p = 0.64)	57/1618 (3·5)	73/1366 (5·3)	1.6	2.9		0·65 (0·46 to 0·94)
No baseline use of GLP-1 RA					i I	
High atherosclerotic cardiovascular risk trials	469/23585 (2.0)	526/17302 (3.0)	0.6	1.3	-	0·59 (0·52 to 0·67)
Stable heart failure trials	235/4781 (4.9)	231/4798 (4·8)	2.9	3⋅1	- -	1·02 (0·85 to 1·22)
Chronic kidney disease trials	688/9839 (7.0)	1015/9817 (10·3)	3.7	5.6		0.64 (0.58 to 0.71)
Subtotal (I-squared = 70·4%, p<0.001)	1392/38205 (3.6)	1772/31917 (5·6)	1.7	2.9	♦ i	0·67 (0·62 to 0·72)
Total	1449/39823 (3·6)	1845/33283 (5.5)	1.7	2.9	♦ i	0.67 (0.62 to 0.72)
Heterogeneity by use of GLP-1 RA: $p = 0.81$					0.25 0.5 1.0 2.0 4.0	
					HR (95% CI)	
					Favours Favours SGLT2 inhibitor placebo	


Consistent benefit on <u>chronic eGFR slope</u> by baseline GLP-1RA use

Consistent benefit on total eGFR slope by baseline GLP-1RA use


Consistent benefit on <u>all-cause mortality</u> by baseline GLP-1RA use

	Events/patients (%)		Event rate per 100 patient years			
	SGLT2 inhibitor	Placebo	SGLT2 inhibitor	Placebo		HR (95% CI)
Baseline use of GLP-1 RA					1	
High atherosclerotic cardiovascular risk trials	47/937(5.0)	35/693 (5·1)	1.4	2·1	<u>-</u> 1	0.88 (0.56 to 1.37)
Stable heart failure trials	11/75 (14·7)	12/66 (18·2)	5.9	11.1	<u></u>	0·74 (0·32 to 1·73)
Chronic kidney disease trials	25/635 (3.9)	30/640 (4·7)	2.2	2.7	<u></u>	0·78 (0·45 to 1·33)
Subtotal (I-squared = 0.0%, p = 0.85)	83/1647 (5.0)	77/1399 (5·5)	2.0	2.8	\Diamond	0·82 (0·60 to 1·13)
No baseline use of GLP-1 RA					į.	
High atherosclerotic cardiovascular risk trials	1624/23626 (6.9)	1264/17312 (7·3)	1.9	3.0	=	0.87 (0.81 to 0.94)
Stable heart failure trials	746/4781 (15.6)	801/4798 (16·7)	8.7	9.4	=	0.93 (0.85 to 1.03)
Chronic kidney disease trials	574/9839 (5.8)	653/9817 (6.7)	3⋅3	3.6	-	0.87 (0.78 to 0.98)
Subtotal (I-squared = 32·8%, p = 0·13)	2944/38246 (7.7)	2718/31927 (8.5)	3⋅1	4·2	♦ !	0·89 (0·84 to 0·94)
Total	3027/39893 (7·6)	2795/33326 (8·4)	3∙0	4·1	♦i	0·89 (0·84 to 0·93)
Heterogeneity by use of GLP-1 RA: $p = 0.63$				(0.25 0.5 1.0 2.0 4.0	
					Favours SGLT2 inhibitor placebo	

Consistent effects on <u>safety outcomes</u> regardless of GLP-1RA

Discussion

- Largest and most comprehensive assessment of the effects of SGLT2i on clinical outcomes by baseline GLP-1RA use
- Important clinical implications given the rapidly expanding indications for GLP1-RA use
- Clear benefits on composite kidney endpoint and eGFR slope in patients receiving and not receiving GLP-1RA
 - Strongest evidence yet for combination SGLT2i and GLP-1RA to reduce kidney failure due to diabetes

Limitations

- Relatively small proportion of patients receiving GLP-1RA
 - Fewer composite kidney endpoints in this subgroup
- All GLP-1RAs considered together
 - There may be important differences within the class
- Does not address the question of combined initiation of SGLT2i and GLP-1RA
 - Requires a dedicated clinical trial

Conclusion

- Pooled data from the totality of the worldwide placebo-controlled SGLT2i trials indicates the effects of SGLT2i on cardiovascular and kidney outcomes are similar regardless of background use of GLP-1RA
- These findings suggest independent effects of these evidencebased therapies and support clinical practice guidelines recommending the use of both these agents to optimise cardiovascular and kidney outcomes

Acknowledgements

Find out more:

www.SMART-C.net

In press publication

THE LANCET Diabetes & Endocrinology

Ellen Apperloo MD,* Brendon L Neuen PhD,* Robert A Fletcher MSc, Niels Jongs PhD, Stefan D Anker MD, Deepak L Bhatt MD, Javed Butler MD, David ZI Cherney PhD, William G Herrington MD, Silvio E Inzucchi MD, Meg J Jardine PhD, Chih-Chin Liu PhD, Kenneth W Mahaffey MD, Darren K McGuire MD, John JV McMurray MD, Bruce Neal PhD, Milton Packer MD, Prof Vlado Perkovic PhD, Marc S Sabatine MD, Scott D Solomon MD, Natalie Staplin PhD, Michael Szarek PhD, Muthiah Vaduganathan MD, Christoph Wanner MD, David C Wheeler MD, Stephen D Wiviott MD, Faiez Zannad MD, Hiddo J.L. Heerspink PhD

*Contributed equally

Slides available at www.SMART-C.net/resources

